x1: New England Crime Rate
3.5 | 3.9 | 4.2 | 4.1 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
x2: Rocky Mountain Crime Rate
3.7 | 4.1 | 4.7 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population).
3.3 | 3.7 | 4.2 | 3.9 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population).
3.9 | 4.1 | 4.5 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
Assume that the crime rate distribution is approximately normal in both regions. Do the data indicate that the violent crime rate in the Rocky Mountain region is higher than in New England? Use ? = 0.01. Solve the problem using both the traditional method and the P-value method. (Test the difference ?1 − ?2. Round the test statistic and critical value to three decimal places.)
test statistic | |
critical value |
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population).
3.3 | 3.7 | 4.2 | 3.9 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population).
3.5 | 4.1 | 4.7 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
Assume that the crime rate distribution is approximately normal in both regions. Do the data indicate that the violent crime rate in the Rocky Mountain region is higher than in New England? Use ? = 0.01. Solve the problem using both the traditional method and the P-value method. (Test the difference ?1 − ?2. Round the test statistic and critical value to three decimal places.)
test statistic | |
critical value |
Find (or estimate) the P-value.
Conclusion
Compare your conclusion with the conclusion obtained by using the P-value method. Are they the same?
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population).
3.3 | 3.9 | 4.2 | 4.1 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population).
3.7 | 4.1 | 4.7 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
Assume that the crime rate distribution is approximately normal in both regions. Do the data indicate that the violent crime rate in the Rocky Mountain region is higher than in New England? Use ? = 0.01. Solve the problem using both the traditional method and the P-value method. (Test the difference ?1 − ?2. Round the test statistic and critical value to three decimal places.)
test statistic | |
critical value |
Find (or estimate) the P-value.
Conclusion
Compare your conclusion with the conclusion obtained by using the P-value method. Are they the same?
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population).
3.3 | 3.9 | 4.2 | 4.1 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population).
3.7 | 4.1 | 4.7 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
Assume that the crime rate distribution is approximately normal in both regions. Do the data indicate that the violent crime rate in the Rocky Mountain region is higher than in New England? Use ? = 0.01. Solve the problem using both the traditional method and the P-value method. (Test the difference ?1 − ?2. Round the test statistic and critical value to three decimal places.)
test statistic | |
critical value |
Find (or estimate) the P-value.
Conclusion
Compare your conclusion with the conclusion obtained by using the P-value method. Are they the same?
A random sample of n1 = 10 regions in New England gave the following violent crime rates (per million population).
3.3 | 3.7 | 4.2 | 3.9 | 3.3 | 4.1 | 1.8 | 4.8 | 2.9 | 3.1 |
Another random sample of n2 = 12 regions in the Rocky Mountain states gave the following violent crime rates (per million population).
3.9 | 4.1 | 4.5 | 5.5 | 3.3 | 4.8 | 3.5 | 2.4 | 3.1 | 3.5 | 5.2 | 2.8 |
Assume that the crime rate distribution is approximately normal in both regions. Do the data indicate that the violent crime rate in the Rocky Mountain region is higher than in New England? Use ? = 0.01. Solve the problem using both the traditional method and the P-value method. (Test the difference ?1 − ?2. Round the test statistic and critical value to three decimal places.)
test statistic | |
critical value |
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more
Recent Comments