The following data summarize t

The following data summarize the results from an independent measures study comparing three treatment conditions.

I

II

III

 

5

3

6              

 

3

3

8

 

1

7

5

 

1

4

2

 

5

3

4

 

T =15

T =20

T = 25

G = 60

SS =16

SS =12

SS =20

ΣX2 = 298

Use an ANOVA with α = .01 to determine whether there are any significant differences among the three treatment means

The null hypothesis in symbols  is:

H0: μ1 ≠ μ2≠ μ3
H0: μ1 = μ2 = μ3
H0: M1 = M2 = M3
H0: M1 ≠ M2≠ M3
H0: μ1> μ2> μ3
H0: μ1 ≤ μ2≤ μ3

The alternative hypothesis is:

There are no significant differences among the three treatment means
All pairs of means are significantly different from each other
There is at least one significant mean difference:
At least two means significantly differ from each other
H1: μ1 ≠ μ2≠ μ3
 
The Critical F-value is:
 
The F-statistic is:
 

Your decision is:

Reject the null hypothesis and conclude that there are no significant mean differences among the treatments
Reject the null hypothesis and conclude that there are significant mean differences among the treatments
Fail to reject the null hypothesis and conclude that there are no significant mean differences among the treatments
Fail to reject the null hypothesis and conclude that there are significant mean differences among the treatments
 
 
 
 

 

Place your order
(550 words)

Approximate price: $22

The following data summarize t

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    4              3            8                    G = 48

                                                                    3              1            4                 ∑X2 = 238

                                                                    5              3            6

                                                                    4              1            6

                                                                 x̅1 = 4        x̅2 = 2      x̅ = 6 

                                                               T1 = 16      T2 = 8      T3 = 24

                                                              SS1 = 2     SS2 = 4    SS3 = 8

Use an ANOVA with an α = .05 to determine whether there are any significant differences among the three treatment means.

what correctly represents the null and alternative hypothesis?

what represents the proper critical region?

Compute the test statistic

what can be concluded?

The following data summarize t

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    4              3            8                    G = 48

                                                                    3              1            4                 ∑X2 = 238

                                                                    5              3            6

                                                                    4              1            6

                                                                 x̅1 = 4        x̅2 = 2      x̅ = 6 

                                                               T1 = 16      T2 = 8      T3 = 24

                                                              SS1 = 2     SS2 = 4    SS3 = 8

1. Calculate the sample variance for treatment condition I

2.

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    4              3            8                    G = 48

                                                                    3              1            4                 ∑X2 = 238

                                                                    5              3            6

                                                                    4              1            6

                                                                 x̅1 = 4        x̅2 = 2      x̅ = 6 

                                                               T1 = 16      T2 = 8      T3 = 24

                                                              SS1 = 2     SS2 = 4    SS3 = 8

1.Calculate the sample variance for treatment condition I

2. Calculate the sample variance for treatment condition II

3. Calculate the sample variance for treatment condition III

The following data summarize t

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    3              5            6                    G = 60

                                                                    5              5           10                 ∑X2 = 392

                                                                    3              1           10

                                                                    1              5            6

                                                                 x̅1 = 3        x̅2 = 4      x̅3 = 8 

                                                               T1 = 12      T2 = 16    T3 =32

                                                              SS1 = 8     SS2 = 12  SS3 = 16

Use an ANOVA with α = .05 to determine whether there are any significant differences among the three treatment means.

Calculate η2 to measure the effect size for this study

The following data summarize t

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    3              5            6                    G = 60

                                                                    5              5           10                 ∑X2 = 392

                                                                    3              1           10

                                                                    1              5            6

                                                                 x̅1 = 3        x̅2 = 4      x̅3 = 8 

                                                               T1 = 12      T2 = 16    T3 =32

                                                              SS1 = 8     SS2 = 12  SS3 = 16

Use an ANOVA with α = .05 to determine whether there are any significant differences among the three treatment means.

Compute the test statistic (Must also show work for SS, df, and MS values)

Based on the calculated test statistic, would you reject the null hypothesis?

Based on the previously conducted steps, we can conclude what?

The following data summarize t

The following data summarize the results from an independent-measures study comparing three treatment conditions.

                                                                             Treatment

                                                                    I               II            III                   N = 12

                                                                    3              5            6                    G = 60

                                                                    5              5           10                 ∑X2 = 392

                                                                    3              1           10

                                                                    1              5            6

                                                                 x̅1 = 3        x̅2 = 4      x̅3 = 8 

                                                               T1 = 12      T2 = 16    T3 =32

                                                              SS1 = 8     SS2 = 12  SS3 = 16

Use an ANOVA with α = .05 to determine whether there are any significant differences among the three treatment means.

What correctly represents the null and alternative hypothesis?

What represents the proper critical region?

The following data summarize t

The following data summarize the operations during the year. Prepare a journal entry for each
transaction.
A. Purchase of raw materials on account: $3,000
B. Raw materials used by Job 1: $500
C. Raw materials used as indirect materials: $100
D. Direct labor for Job 1: $300
E. Indirect labor incurred: $50
F. Factory utilities incurred on account: $700
G. Adjusting entry for factory depreciation: $250
H. Manufacturing overhead applied as percent of direct labor: 200%
I. Job 1 is transferred to finished goods
J. Job 1 is sold: $3,000
K. Manufacturing overhead is over applied: $100

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more