This code is in ada code in ada
Please type your solution out in working code don’t just give me an example they may just confuse me more
Below is Number_Theory.adb
with Ada.Numerics.Generic_Elementary_Functions;
package body Number_Theory is
— Instantiate the library for floating point math using Floating_Type.
package Floating_Functions is new Ada.Numerics.Generic_Elementary_Functions(Floating_Type);
use Floating_Functions;
function Factorial(N : in Factorial_Argument_Type) return Positive is
begin
— TODO: Finish me!
—
— 0! is 1
— N! is N * (N-1) * (N-2) * … * 1
return 1;
end Factorial;
function Is_Prime(N : in Prime_Argument_Type) return Boolean is
Upper_Bound : Prime_Argument_Type;
Current_Divisor : Prime_Argument_Type;
begin
— Handle 2 as a special case.
if N = 2 then
return True;
end if;
Upper_Bound := N – 1;
Current_Divisor := 2;
while Current_Divisor < Upper_Bound loop
if N rem Current_Divisor = 0 then
return False;
end if;
Upper_Bound := N / Current_Divisor;
end loop;
return True;
end Is_Prime;
function Prime_Counting(N : in Prime_Argument_Type) return Natural is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 0;
end Prime_Counting;
function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 1.0;
end Logarithmic_Integral;
end Number_Theory;
This code is in ada code in ada
Please type your solution out in working code don’t just give me an example they may just confuse me more
Below is Number_Theory.adb
with Ada.Numerics.Generic_Elementary_Functions;
package body Number_Theory is
— Instantiate the library for floating point math using Floating_Type.
package Floating_Functions is new Ada.Numerics.Generic_Elementary_Functions(Floating_Type);
use Floating_Functions;
function Factorial(N : in Factorial_Argument_Type) return Positive is
begin
— TODO: Finish me!
—
— 0! is 1
— N! is N * (N-1) * (N-2) * … * 1
return 1;
end Factorial;
function Is_Prime(N : in Prime_Argument_Type) return Boolean is
Upper_Bound : Prime_Argument_Type;
Current_Divisor : Prime_Argument_Type;
begin
— Handle 2 as a special case.
if N = 2 then
return True;
end if;
Upper_Bound := N – 1;
Current_Divisor := 2;
while Current_Divisor < Upper_Bound loop
if N rem Current_Divisor = 0 then
return False;
end if;
Upper_Bound := N / Current_Divisor;
end loop;
return True;
end Is_Prime;
function Prime_Counting(N : in Prime_Argument_Type) return Natural is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 0;
end Prime_Counting;
function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 1.0;
end Logarithmic_Integral;
end Number_Theory;
This code is in ada code in ada
Please type your solution out in working code don’t just give me an example they may just confuse me more
Below is Number_Theory.adb
with Ada.Numerics.Generic_Elementary_Functions;
package body Number_Theory is
— Instantiate the library for floating point math using Floating_Type.
package Floating_Functions is new Ada.Numerics.Generic_Elementary_Functions(Floating_Type);
use Floating_Functions;
function Factorial(N : in Factorial_Argument_Type) return Positive is
begin
— TODO: Finish me!
—
— 0! is 1
— N! is N * (N-1) * (N-2) * … * 1
return 1;
end Factorial;
function Is_Prime(N : in Prime_Argument_Type) return Boolean is
Upper_Bound : Prime_Argument_Type;
Current_Divisor : Prime_Argument_Type;
begin
— Handle 2 as a special case.
if N = 2 then
return True;
end if;
Upper_Bound := N – 1;
Current_Divisor := 2;
while Current_Divisor < Upper_Bound loop
if N rem Current_Divisor = 0 then
return False;
end if;
Upper_Bound := N / Current_Divisor;
end loop;
return True;
end Is_Prime;
function Prime_Counting(N : in Prime_Argument_Type) return Natural is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 0;
end Prime_Counting;
function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 1.0;
end Logarithmic_Integral;
end Number_Theory;
This code is in ada code in ada
Please type your solution out in working code don’t just give me an example they may just confuse me more
Below is Number_Theory.adb
with Ada.Numerics.Generic_Elementary_Functions;
package body Number_Theory is
— Instantiate the library for floating point math using Floating_Type.
package Floating_Functions is new Ada.Numerics.Generic_Elementary_Functions(Floating_Type);
use Floating_Functions;
function Factorial(N : in Factorial_Argument_Type) return Positive is
begin
— TODO: Finish me!
—
— 0! is 1
— N! is N * (N-1) * (N-2) * … * 1
return 1;
end Factorial;
function Is_Prime(N : in Prime_Argument_Type) return Boolean is
Upper_Bound : Prime_Argument_Type;
Current_Divisor : Prime_Argument_Type;
begin
— Handle 2 as a special case.
if N = 2 then
return True;
end if;
Upper_Bound := N – 1;
Current_Divisor := 2;
while Current_Divisor < Upper_Bound loop
if N rem Current_Divisor = 0 then
return False;
end if;
Upper_Bound := N / Current_Divisor;
end loop;
return True;
end Is_Prime;
function Prime_Counting(N : in Prime_Argument_Type) return Natural is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 0;
end Prime_Counting;
function Logarithmic_Integral(N : in Prime_Argument_Type) return Floating_Type is
begin
— TODO: Finish me!
—
— See the lab page for more information.
return 1.0;
end Logarithmic_Integral;
end Number_Theory;
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more
Recent Comments